/* File retrieval. Copyright (C) 1995, 1996, 1997, 1998, 2000, 2001 Free Software Foundation, Inc. This file is part of GNU Wget. GNU Wget is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GNU Wget is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Wget; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. In addition, as a special exception, the Free Software Foundation gives permission to link the code of its release of Wget with the OpenSSL project's "OpenSSL" library (or with modified versions of it that use the same license as the "OpenSSL" library), and distribute the linked executables. You must obey the GNU General Public License in all respects for all of the code used other than "OpenSSL". If you modify this file, you may extend this exception to your version of the file, but you are not obligated to do so. If you do not wish to do so, delete this exception statement from your version. */ #include #include #include #include #ifdef HAVE_UNISTD_H # include #endif /* HAVE_UNISTD_H */ #include #ifdef HAVE_STRING_H # include #else # include #endif /* HAVE_STRING_H */ #include #include "wget.h" #include "utils.h" #include "retr.h" #include "progress.h" #include "url.h" #include "recur.h" #include "ftp.h" #include "host.h" #include "connect.h" #include "hash.h" #include "convert.h" #include "ptimer.h" #ifndef errno extern int errno; #endif /* Total size of downloaded files. Used to enforce quota. */ LARGE_INT total_downloaded_bytes; /* If non-NULL, the stream to which output should be written. This stream is initialized when `-O' is used. */ FILE *output_stream; /* Whether output_document is a regular file we can manipulate, i.e. not `-' or a device file. */ int output_stream_regular; static struct { wgint chunk_bytes; double chunk_start; double sleep_adjust; } limit_data; static void limit_bandwidth_reset (void) { limit_data.chunk_bytes = 0; limit_data.chunk_start = 0; limit_data.sleep_adjust = 0; } /* Limit the bandwidth by pausing the download for an amount of time. BYTES is the number of bytes received from the network, and TIMER is the timer that started at the beginning of download. */ static void limit_bandwidth (wgint bytes, struct ptimer *timer) { double delta_t = ptimer_read (timer) - limit_data.chunk_start; double expected; limit_data.chunk_bytes += bytes; /* Calculate the amount of time we expect downloading the chunk should take. If in reality it took less time, sleep to compensate for the difference. */ expected = 1000.0 * limit_data.chunk_bytes / opt.limit_rate; if (expected > delta_t) { double slp = expected - delta_t + limit_data.sleep_adjust; double t0, t1; if (slp < 200) { DEBUGP (("deferring a %.2f ms sleep (%s/%.2f).\n", slp, number_to_static_string (limit_data.chunk_bytes), delta_t)); return; } DEBUGP (("\nsleeping %.2f ms for %s bytes, adjust %.2f ms\n", slp, number_to_static_string (limit_data.chunk_bytes), limit_data.sleep_adjust)); t0 = ptimer_read (timer); xsleep (slp / 1000); t1 = ptimer_measure (timer); /* Due to scheduling, we probably slept slightly longer (or shorter) than desired. Calculate the difference between the desired and the actual sleep, and adjust the next sleep by that amount. */ limit_data.sleep_adjust = slp - (t1 - t0); /* If sleep_adjust is very large, it's likely due to suspension and not clock inaccuracy. Don't enforce those. */ if (limit_data.sleep_adjust > 500) limit_data.sleep_adjust = 500; else if (limit_data.sleep_adjust < -500) limit_data.sleep_adjust = -500; } limit_data.chunk_bytes = 0; limit_data.chunk_start = ptimer_read (timer); } #ifndef MIN # define MIN(i, j) ((i) <= (j) ? (i) : (j)) #endif /* Write data in BUF to OUT. However, if *SKIP is non-zero, skip that amount of data and decrease SKIP. Increment *TOTAL by the amount of data written. */ static int write_data (FILE *out, const char *buf, int bufsize, wgint *skip, wgint *written) { if (!out) return 1; if (*skip > bufsize) { *skip -= bufsize; return 1; } if (*skip) { buf += *skip; bufsize -= *skip; *skip = 0; if (bufsize == 0) return 1; } fwrite (buf, 1, bufsize, out); *written += bufsize; /* Immediately flush the downloaded data. This should not hinder performance: fast downloads will arrive in large 16K chunks (which stdio would write out immediately anyway), and slow downloads wouldn't be limited by disk speed. */ fflush (out); return !ferror (out); } /* Read the contents of file descriptor FD until it the connection terminates or a read error occurs. The data is read in portions of up to 16K and written to OUT as it arrives. If opt.verbose is set, the progress is shown. TOREAD is the amount of data expected to arrive, normally only used by the progress gauge. STARTPOS is the position from which the download starts, used by the progress gauge. If QTYREAD is non-NULL, the value it points to is incremented by the amount of data read from the network. If QTYWRITTEN is non-NULL, the value it points to is incremented by the amount of data written to disk. The time it took to download the data (in milliseconds) is stored to ELAPSED. The function exits and returns the amount of data read. In case of error while reading data, -1 is returned. In case of error while writing data, -2 is returned. */ int fd_read_body (int fd, FILE *out, wgint toread, wgint startpos, wgint *qtyread, wgint *qtywritten, double *elapsed, int flags) { int ret = 0; static char dlbuf[16384]; int dlbufsize = sizeof (dlbuf); struct ptimer *timer = NULL; double last_successful_read_tm = 0; /* The progress gauge, set according to the user preferences. */ void *progress = NULL; /* Non-zero if the progress gauge is interactive, i.e. if it can continually update the display. When true, smaller timeout values are used so that the gauge can update the display when data arrives slowly. */ int progress_interactive = 0; int exact = flags & rb_read_exactly; wgint skip = 0; /* How much data we've read/written. */ wgint sum_read = 0; wgint sum_written = 0; if (flags & rb_skip_startpos) skip = startpos; if (opt.verbose) { /* If we're skipping STARTPOS bytes, pass 0 as the INITIAL argument to progress_create because the indicator doesn't (yet) know about "skipping" data. */ progress = progress_create (skip ? 0 : startpos, startpos + toread); progress_interactive = progress_interactive_p (progress); } if (opt.limit_rate) limit_bandwidth_reset (); /* A timer is needed for tracking progress, for throttling, and for tracking elapsed time. If either of these are requested, start the timer. */ if (progress || opt.limit_rate || elapsed) { timer = ptimer_new (); last_successful_read_tm = 0; } /* Use a smaller buffer for low requested bandwidths. For example, with --limit-rate=2k, it doesn't make sense to slurp in 16K of data and then sleep for 8s. With buffer size equal to the limit, we never have to sleep for more than one second. */ if (opt.limit_rate && opt.limit_rate < dlbufsize) dlbufsize = opt.limit_rate; /* Read from FD while there is data to read. Normally toread==0 means that it is unknown how much data is to arrive. However, if EXACT is set, then toread==0 means what it says: that no data should be read. */ while (!exact || (sum_read < toread)) { int rdsize = exact ? MIN (toread - sum_read, dlbufsize) : dlbufsize; double tmout = opt.read_timeout; if (progress_interactive) { /* For interactive progress gauges, always specify a ~1s timeout, so that the gauge can be updated regularly even when the data arrives very slowly or stalls. */ tmout = 0.95; if (opt.read_timeout) { double waittm; waittm = (ptimer_read (timer) - last_successful_read_tm) / 1000; if (waittm + tmout > opt.read_timeout) { /* Don't let total idle time exceed read timeout. */ tmout = opt.read_timeout - waittm; if (tmout < 0) { /* We've already exceeded the timeout. */ ret = -1, errno = ETIMEDOUT; break; } } } } ret = fd_read (fd, dlbuf, rdsize, tmout); if (progress_interactive && ret < 0 && errno == ETIMEDOUT) ret = 0; /* interactive timeout, handled above */ else if (ret <= 0) break; /* EOF or read error */ if (progress || opt.limit_rate) { ptimer_measure (timer); if (ret > 0) last_successful_read_tm = ptimer_read (timer); } if (ret > 0) { sum_read += ret; if (!write_data (out, dlbuf, ret, &skip, &sum_written)) { ret = -2; goto out_; } } if (opt.limit_rate) limit_bandwidth (ret, timer); if (progress) progress_update (progress, ret, ptimer_read (timer)); #ifdef WINDOWS if (toread > 0 && !opt.quiet) ws_percenttitle (100.0 * (startpos + sum_read) / (startpos + toread)); #endif } if (ret < -1) ret = -1; out_: if (progress) progress_finish (progress, ptimer_read (timer)); if (elapsed) *elapsed = ptimer_read (timer); if (timer) ptimer_destroy (timer); if (qtyread) *qtyread += sum_read; if (qtywritten) *qtywritten += sum_written; return ret; } /* Read a hunk of data from FD, up until a terminator. The terminator is whatever the TERMINATOR function determines it to be; for example, it can be a line of data, or the head of an HTTP response. The function returns the data read allocated with malloc. In case of error, NULL is returned. In case of EOF and no data read, NULL is returned and errno set to 0. In case of EOF with data having been read, the data is returned, but it will (obviously) not contain the terminator. The idea is to be able to read a line of input, or otherwise a hunk of text, such as the head of an HTTP request, without crossing the boundary, so that the next call to fd_read etc. reads the data after the hunk. To achieve that, this function does the following: 1. Peek at available data. 2. Determine whether the peeked data, along with the previously read data, includes the terminator. 2a. If yes, read the data until the end of the terminator, and exit. 2b. If no, read the peeked data and goto 1. The function is careful to assume as little as possible about the implementation of peeking. For example, every peek is followed by a read. If the read returns a different amount of data, the process is retried until all data arrives safely. SIZEHINT is the buffer size sufficient to hold all the data in the typical case (it is used as the initial buffer size). MAXSIZE is the maximum amount of memory this function is allowed to allocate, or 0 if no upper limit is to be enforced. This function should be used as a building block for other functions -- see fd_read_line as a simple example. */ char * fd_read_hunk (int fd, hunk_terminator_t terminator, long sizehint, long maxsize) { long bufsize = sizehint; char *hunk = xmalloc (bufsize); int tail = 0; /* tail position in HUNK */ assert (maxsize >= bufsize); while (1) { const char *end; int pklen, rdlen, remain; /* First, peek at the available data. */ pklen = fd_peek (fd, hunk + tail, bufsize - 1 - tail, -1.0); if (pklen < 0) { xfree (hunk); return NULL; } end = terminator (hunk, tail, pklen); if (end) { /* The data contains the terminator: we'll drain the data up to the end of the terminator. */ remain = end - (hunk + tail); if (remain == 0) { /* No more data needs to be read. */ hunk[tail] = '\0'; return hunk; } if (bufsize - 1 < tail + remain) { bufsize = tail + remain + 1; hunk = xrealloc (hunk, bufsize); } } else /* No terminator: simply read the data we know is (or should be) available. */ remain = pklen; /* Now, read the data. Note that we make no assumptions about how much data we'll get. (Some TCP stacks are notorious for read returning less data than the previous MSG_PEEK.) */ rdlen = fd_read (fd, hunk + tail, remain, 0.0); if (rdlen < 0) { xfree_null (hunk); return NULL; } tail += rdlen; hunk[tail] = '\0'; if (rdlen == 0) { if (tail == 0) { /* EOF without anything having been read */ xfree (hunk); errno = 0; return NULL; } else /* EOF seen: return the data we've read. */ return hunk; } if (end && rdlen == remain) /* The terminator was seen and the remaining data drained -- we got what we came for. */ return hunk; /* Keep looping until all the data arrives. */ if (tail == bufsize - 1) { /* Double the buffer size, but refuse to allocate more than MAXSIZE bytes. */ if (maxsize && bufsize >= maxsize) { xfree (hunk); errno = ENOMEM; return NULL; } bufsize <<= 1; if (maxsize && bufsize > maxsize) bufsize = maxsize; hunk = xrealloc (hunk, bufsize); } } } static const char * line_terminator (const char *hunk, int oldlen, int peeklen) { const char *p = memchr (hunk + oldlen, '\n', peeklen); if (p) /* p+1 because we want the line to include '\n' */ return p + 1; return NULL; } /* The maximum size of the single line we agree to accept. This is not meant to impose an arbitrary limit, but to protect the user from Wget slurping up available memory upon encountering malicious or buggy server output. Define it to 0 to remove the limit. */ #define FD_READ_LINE_MAX 4096 /* Read one line from FD and return it. The line is allocated using malloc, but is never larger than FD_READ_LINE_MAX. If an error occurs, or if no data can be read, NULL is returned. In the former case errno indicates the error condition, and in the latter case, errno is NULL. */ char * fd_read_line (int fd) { return fd_read_hunk (fd, line_terminator, 128, FD_READ_LINE_MAX); } /* Return a printed representation of the download rate, as appropriate for the speed. If PAD is non-zero, strings will be padded to the width of 7 characters (xxxx.xx). */ char * retr_rate (wgint bytes, double msecs, int pad) { static char res[20]; static const char *rate_names[] = {"B/s", "KB/s", "MB/s", "GB/s" }; int units = 0; double dlrate = calc_rate (bytes, msecs, &units); sprintf (res, pad ? "%7.2f %s" : "%.2f %s", dlrate, rate_names[units]); return res; } /* Calculate the download rate and trim it as appropriate for the speed. Appropriate means that if rate is greater than 1K/s, kilobytes are used, and if rate is greater than 1MB/s, megabytes are used. UNITS is zero for B/s, one for KB/s, two for MB/s, and three for GB/s. */ double calc_rate (wgint bytes, double msecs, int *units) { double dlrate; assert (msecs >= 0); assert (bytes >= 0); if (msecs == 0) /* If elapsed time is exactly zero, it means we're under the resolution of the timer. This can easily happen on systems that use time() for the timer. Since the interval lies between 0 and the timer's resolution, assume half the resolution. */ msecs = ptimer_resolution () / 2.0; dlrate = 1000.0 * bytes / msecs; if (dlrate < 1024.0) *units = 0; else if (dlrate < 1024.0 * 1024.0) *units = 1, dlrate /= 1024.0; else if (dlrate < 1024.0 * 1024.0 * 1024.0) *units = 2, dlrate /= (1024.0 * 1024.0); else /* Maybe someone will need this, one day. */ *units = 3, dlrate /= (1024.0 * 1024.0 * 1024.0); return dlrate; } /* Maximum number of allowed redirections. 20 was chosen as a "reasonable" value, which is low enough to not cause havoc, yet high enough to guarantee that normal retrievals will not be hurt by the check. */ #define MAX_REDIRECTIONS 20 #define SUSPEND_POST_DATA do { \ post_data_suspended = 1; \ saved_post_data = opt.post_data; \ saved_post_file_name = opt.post_file_name; \ opt.post_data = NULL; \ opt.post_file_name = NULL; \ } while (0) #define RESTORE_POST_DATA do { \ if (post_data_suspended) \ { \ opt.post_data = saved_post_data; \ opt.post_file_name = saved_post_file_name; \ post_data_suspended = 0; \ } \ } while (0) static char *getproxy PARAMS ((struct url *)); /* Retrieve the given URL. Decides which loop to call -- HTTP, FTP, FTP, proxy, etc. */ /* #### This function should be rewritten so it doesn't return from multiple points. */ uerr_t retrieve_url (const char *origurl, char **file, char **newloc, const char *refurl, int *dt) { uerr_t result; char *url; int location_changed, dummy; char *mynewloc, *proxy; struct url *u, *proxy_url; int up_error_code; /* url parse error code */ char *local_file; int redirection_count = 0; int post_data_suspended = 0; char *saved_post_data = NULL; char *saved_post_file_name = NULL; /* If dt is NULL, use local storage. */ if (!dt) { dt = &dummy; dummy = 0; } url = xstrdup (origurl); if (newloc) *newloc = NULL; if (file) *file = NULL; u = url_parse (url, &up_error_code); if (!u) { logprintf (LOG_NOTQUIET, "%s: %s.\n", url, url_error (up_error_code)); xfree (url); return URLERROR; } if (!refurl) refurl = opt.referer; redirected: result = NOCONERROR; mynewloc = NULL; local_file = NULL; proxy_url = NULL; proxy = getproxy (u); if (proxy) { /* Parse the proxy URL. */ proxy_url = url_parse (proxy, &up_error_code); if (!proxy_url) { logprintf (LOG_NOTQUIET, _("Error parsing proxy URL %s: %s.\n"), proxy, url_error (up_error_code)); xfree (url); RESTORE_POST_DATA; return PROXERR; } if (proxy_url->scheme != SCHEME_HTTP && proxy_url->scheme != u->scheme) { logprintf (LOG_NOTQUIET, _("Error in proxy URL %s: Must be HTTP.\n"), proxy); url_free (proxy_url); xfree (url); RESTORE_POST_DATA; return PROXERR; } } if (u->scheme == SCHEME_HTTP #ifdef HAVE_SSL || u->scheme == SCHEME_HTTPS #endif || (proxy_url && proxy_url->scheme == SCHEME_HTTP)) { result = http_loop (u, &mynewloc, &local_file, refurl, dt, proxy_url); } else if (u->scheme == SCHEME_FTP) { /* If this is a redirection, we must not allow recursive FTP retrieval, so we save recursion to oldrec, and restore it later. */ int oldrec = opt.recursive; if (redirection_count) opt.recursive = 0; result = ftp_loop (u, dt, proxy_url); opt.recursive = oldrec; /* There is a possibility of having HTTP being redirected to FTP. In these cases we must decide whether the text is HTML according to the suffix. The HTML suffixes are `.html', `.htm' and a few others, case-insensitive. */ if (redirection_count && local_file && u->scheme == SCHEME_FTP) { if (has_html_suffix_p (local_file)) *dt |= TEXTHTML; } } if (proxy_url) { url_free (proxy_url); proxy_url = NULL; } location_changed = (result == NEWLOCATION); if (location_changed) { char *construced_newloc; struct url *newloc_parsed; assert (mynewloc != NULL); if (local_file) xfree (local_file); /* The HTTP specs only allow absolute URLs to appear in redirects, but a ton of boneheaded webservers and CGIs out there break the rules and use relative URLs, and popular browsers are lenient about this, so wget should be too. */ construced_newloc = uri_merge (url, mynewloc); xfree (mynewloc); mynewloc = construced_newloc; /* Now, see if this new location makes sense. */ newloc_parsed = url_parse (mynewloc, &up_error_code); if (!newloc_parsed) { logprintf (LOG_NOTQUIET, "%s: %s.\n", escnonprint_uri (mynewloc), url_error (up_error_code)); url_free (u); xfree (url); xfree (mynewloc); RESTORE_POST_DATA; return result; } /* Now mynewloc will become newloc_parsed->url, because if the Location contained relative paths like .././something, we don't want that propagating as url. */ xfree (mynewloc); mynewloc = xstrdup (newloc_parsed->url); /* Check for max. number of redirections. */ if (++redirection_count > MAX_REDIRECTIONS) { logprintf (LOG_NOTQUIET, _("%d redirections exceeded.\n"), MAX_REDIRECTIONS); url_free (newloc_parsed); url_free (u); xfree (url); xfree (mynewloc); RESTORE_POST_DATA; return WRONGCODE; } xfree (url); url = mynewloc; url_free (u); u = newloc_parsed; /* If we're being redirected from POST, we don't want to POST again. Many requests answer POST with a redirection to an index page; that redirection is clearly a GET. We "suspend" POST data for the duration of the redirections, and restore it when we're done. */ if (!post_data_suspended) SUSPEND_POST_DATA; goto redirected; } if (local_file) { if (*dt & RETROKF) { register_download (u->url, local_file); if (redirection_count && 0 != strcmp (origurl, u->url)) register_redirection (origurl, u->url); if (*dt & TEXTHTML) register_html (u->url, local_file); } } if (file) *file = local_file ? local_file : NULL; else xfree_null (local_file); url_free (u); if (redirection_count) { if (newloc) *newloc = url; else xfree (url); } else { if (newloc) *newloc = NULL; xfree (url); } RESTORE_POST_DATA; return result; } /* Find the URLs in the file and call retrieve_url() for each of them. If HTML is non-zero, treat the file as HTML, and construct the URLs accordingly. If opt.recursive is set, call retrieve_tree() for each file. */ uerr_t retrieve_from_file (const char *file, int html, int *count) { uerr_t status; struct urlpos *url_list, *cur_url; url_list = (html ? get_urls_html (file, NULL, NULL) : get_urls_file (file)); status = RETROK; /* Suppose everything is OK. */ *count = 0; /* Reset the URL count. */ for (cur_url = url_list; cur_url; cur_url = cur_url->next, ++*count) { char *filename = NULL, *new_file = NULL; int dt; if (cur_url->ignore_when_downloading) continue; if (opt.quota && total_downloaded_bytes > opt.quota) { status = QUOTEXC; break; } if ((opt.recursive || opt.page_requisites) && cur_url->url->scheme != SCHEME_FTP) status = retrieve_tree (cur_url->url->url); else status = retrieve_url (cur_url->url->url, &filename, &new_file, NULL, &dt); if (filename && opt.delete_after && file_exists_p (filename)) { DEBUGP (("\ Removing file due to --delete-after in retrieve_from_file():\n")); logprintf (LOG_VERBOSE, _("Removing %s.\n"), filename); if (unlink (filename)) logprintf (LOG_NOTQUIET, "unlink: %s\n", strerror (errno)); dt &= ~RETROKF; } xfree_null (new_file); xfree_null (filename); } /* Free the linked list of URL-s. */ free_urlpos (url_list); return status; } /* Print `giving up', or `retrying', depending on the impending action. N1 and N2 are the attempt number and the attempt limit. */ void printwhat (int n1, int n2) { logputs (LOG_VERBOSE, (n1 == n2) ? _("Giving up.\n\n") : _("Retrying.\n\n")); } /* If opt.wait or opt.waitretry are specified, and if certain conditions are met, sleep the appropriate number of seconds. See the documentation of --wait and --waitretry for more information. COUNT is the count of current retrieval, beginning with 1. */ void sleep_between_retrievals (int count) { static int first_retrieval = 1; if (first_retrieval) { /* Don't sleep before the very first retrieval. */ first_retrieval = 0; return; } if (opt.waitretry && count > 1) { /* If opt.waitretry is specified and this is a retry, wait for COUNT-1 number of seconds, or for opt.waitretry seconds. */ if (count <= opt.waitretry) xsleep (count - 1.0); else xsleep (opt.waitretry); } else if (opt.wait) { if (!opt.random_wait || count > 1) /* If random-wait is not specified, or if we are sleeping between retries of the same download, sleep the fixed interval. */ xsleep (opt.wait); else { /* Sleep a random amount of time averaging in opt.wait seconds. The sleeping amount ranges from 0 to opt.wait*2, inclusive. */ double waitsecs = 2 * opt.wait * random_float (); DEBUGP (("sleep_between_retrievals: avg=%f,sleep=%f\n", opt.wait, waitsecs)); xsleep (waitsecs); } } } /* Free the linked list of urlpos. */ void free_urlpos (struct urlpos *l) { while (l) { struct urlpos *next = l->next; if (l->url) url_free (l->url); xfree_null (l->local_name); xfree (l); l = next; } } /* Rotate FNAME opt.backups times */ void rotate_backups(const char *fname) { int maxlen = strlen (fname) + 1 + numdigit (opt.backups) + 1; char *from = (char *)alloca (maxlen); char *to = (char *)alloca (maxlen); struct_stat sb; int i; if (stat (fname, &sb) == 0) if (S_ISREG (sb.st_mode) == 0) return; for (i = opt.backups; i > 1; i--) { sprintf (from, "%s.%d", fname, i - 1); sprintf (to, "%s.%d", fname, i); rename (from, to); } sprintf (to, "%s.%d", fname, 1); rename(fname, to); } static int no_proxy_match PARAMS ((const char *, const char **)); /* Return the URL of the proxy appropriate for url U. */ static char * getproxy (struct url *u) { char *proxy = NULL; char *rewritten_url; static char rewritten_storage[1024]; if (!opt.use_proxy) return NULL; if (!no_proxy_match (u->host, (const char **)opt.no_proxy)) return NULL; switch (u->scheme) { case SCHEME_HTTP: proxy = opt.http_proxy ? opt.http_proxy : getenv ("http_proxy"); break; #ifdef HAVE_SSL case SCHEME_HTTPS: proxy = opt.https_proxy ? opt.https_proxy : getenv ("https_proxy"); break; #endif case SCHEME_FTP: proxy = opt.ftp_proxy ? opt.ftp_proxy : getenv ("ftp_proxy"); break; case SCHEME_INVALID: break; } if (!proxy || !*proxy) return NULL; /* Handle shorthands. `rewritten_storage' is a kludge to allow getproxy() to return static storage. */ rewritten_url = rewrite_shorthand_url (proxy); if (rewritten_url) { strncpy (rewritten_storage, rewritten_url, sizeof (rewritten_storage)); rewritten_storage[sizeof (rewritten_storage) - 1] = '\0'; proxy = rewritten_storage; } return proxy; } /* Should a host be accessed through proxy, concerning no_proxy? */ static int no_proxy_match (const char *host, const char **no_proxy) { if (!no_proxy) return 1; else return !sufmatch (no_proxy, host); }