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EasyCalc now supports a large number of “special functions,” which should
be especially useful for those involved in mathematical physics, boundary value
problems, and statistics. Most of these functions will only be available if you
apply the flag --enable-specfun to the configure script for EasyCalc. These
functions are for the most part based on approximations given in Chapter 6 of
Numerical Recipes [3], and the public domain Cephes code available from Netlib.
More information on all of these special functions is available from Abramowitz
and Stegun [1]. Discussions of the theory, special properties, and applications
of these functions can be found in [2] and in [4].

Summary of Special Functions

Function Name Name in EasyCalc
Euler Gamma gamma(z)
Beta beta(z:w)
Incomplete Gamma igamma(a:x)
Error erf(x)
Complementary Error erfc(x)
Incomplete Beta ibeta(a:b:x)
Bessel 1st Kind besselj(n:x)
Bessel 2nd Kind bessely(n:x)
Mod. Bessel 1st Kind besseli(n:x)
Mod. Bessel 2nd Kind besselk(n:x)
Inc. Elliptic Integral 1st kind elli1(m:phi)
Inc. Elliptic Integral 2nd kind elli2(m:phi)
Comp. Elliptic Integral 1st kind ellc1(m)
Comp. Elliptic Integral 2nd kind ellc2(m)
Jacobi sn sn(m:u)
Jacobi cn cn(m:u)
Jacobi dn dn(m:u)
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The Euler Gamma Function

The Euler gamma function is the only function here described that is available
whether or not you set --enable-specfun, but if that flag is not set then you
will be able to use the gamma function only for real arguments; to be able to
use it for complex arguments you will need to set that flag. It is used by the
factorial function to compute non-integral values for the factorial as well. The
Euler gamma function is defined by the integral:

Γ(z) =
∫ ∞

0

e−ttx−1dt (1)

You can call the gamma function as gamma(arg). Note that this function is
automatically called implicitly whenever you do fact(arg) where arg is not
an integer. The Euler gamma function should not be evaluated for negative
integer arguments.

The Beta Function

The Beta function is defined by

B(z, w) = B(w, z) =
∫ 1

0

tz−1(1− t)w−1dt =
Γ(z)Γ(w)
Γ(z + w)

(2)

Call it as beta(z:w). It just uses the gamma function to calculate it directly.
Do not call it with negative values for z and/or w.

The Incomplete Gamma Function

The incomplete gamma function is defined by

P (a, x) =
1

Γ(a)

∫ x

0

e−tta−1dt (3)

You can access it with igamma(a:x). Values of a ≤ 0 or for x < 0 are invalid
and produce an error.

The Error Function and the Complementary Er-
ror Function

These functions are defined by

erf(x) =
2√
π

∫ x

0

e−t2dt (4)

and
erfc(x) = 1− erf(x) =

2√
π

∫ ∞

x

e−t2dt (5)

Call them as erf(x) and erfc(x).
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The Incomplete Beta Function

This function is defined by

Ix(a, b) =
1

B(a, b)

∫ x

0

ta−1(1− t)b−1dt (6)

where B(a, b) is the Beta Function (Eq. 2) and can be called as ibeta(a:b:x).
Both a and b must be greater than 0, and 0 ≤ x ≤ 1. Do not use it for values
other than these allowed.

Bessel Functions of the First and Second Kinds

The Bessel functions of the first kind, Jν(x) arise as solutions to the differential
equation:

x2 d2y

dx2
− x

dy

dx
+ (x2 − ν2)y = 0 (7)

and is defined by the series representation

Jν(x) =
∞∑

k=0

(−1)k(x/2)2k+ν

k!Γ(k + ν + 1)
(8)

You can evaluate it with EasyCalc by doing besselj(nu:x). The order ν of
the Bessel function is restricted to nonnegative integers in this version.

The Bessel functions of the second kind Yν(x) are the second linearly inde-
pendent solutions to Eq. 7. For ν not an integer, Yν(x) can be expressed in
terms of the Bessel functions of the first kind as:

Yν(x) =
Jν(x)cos(νπ)− J−ν(x)

sin(νπ)
(9)

but it produces correct results in the limit as ν approaches an integer. You
can evaluate this by doing bessely(nu:x). Again, the order ν is restricted
to integers, and note that all the Bessel functions of the second kind possess
singularities at zero, so don’t try to evaluate it there.

Modified Bessel functions of the First and Second
Kinds

These functions, Iν(x) and Kν(x), arise as the linearly independent solutions to
the differential equation:

x2 d2y

dx2
+ x

dy

dx
− (x2 + ν2)y = 0 (10)

and are the regular Bessel functions Jν(x) and Yν(x) evaluated for purely imag-
inary arguments:

Iν(x) = (−i)νJν(ix) (11)
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and
Kν(x) =

π

2
iν+1[Jν(ix) + iYν(ix)] (12)

They are evaluated by besseli(nu:x) and besselk(nu:x). Again the order
ν is restricted to integers, and the Kν functions have a singularity at zero.

Elliptic Integrals

The incomplete elliptic integral of the first kind is defined as follows:

F (φ|m) =
∫ φ

0

dθ√
1−m2 sin2 θ

(13)

with eccentricity/modulus m and amplitude φ. You can compute this function
by entering elli1(m:phi). The complete elliptic integral of the first kind:

K(m) =
∫ π/2

0

dθ√
1−m2 sin2 θ

(14)

and may be computed as ellc1(m). The incomplete elliptic integral of the
second kind:

E(φ|m) =
∫ φ

0

√
1−m2 sin2 θdθ (15)

may be calculated with elli2(m:phi), while the complete elliptic integral of
the second kind

E(m) =
∫ π/2

0

√
1−m2 sin2 θdθ (16)

may be computed as ellc2(m). All of these elliptic functions can be computed
only with an eccentricity m between 0 and 1. Values outside this are considered
out of range.

Jacobian Elliptic Functions

These functions are inverses of the elliptic integral of the first kind F (φ|m). The
Jacobian elliptic function sn(u|m) is defined as

sn(F (φ|m)|m) = sin φ (17)

The other two functions, sn and dn, can be defined by the relations

cn(F (φ|m)|m) = cos φ (18)

and
dn(F (φ|m)|m) =

√
1−m2 sin2 φ (19)

4



or equivalently,
sn2(u|m) + cn2(u|m) = 1 (20)

and
m2sn2(u|m) + dn2(u|m) = 1 (21)

These three functions may be calculated as sn(m:u), cn(m:u) and dn(m:u).
As with the elliptic integrals, the eccentricity m may only be between 0 and 1.
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